Determination of State Changes for Distributed Parameter Systems Based on Quantitative POD Angle Analysis

نویسندگان

  • Hongwei GUAN
  • Lingjian YE
  • Zhihuan SONG
  • Xiongfei ZHI
چکیده

For distributed parameter systems, recognition of state change is crucial to process operation with a wide range of motivations, for example, sensitivity analysis of input condition, selection of operating point and abnormal situation diagnosis, etc. A key task therein is developing a criterion from which the extent of state change can quantitatively determinated. In this paper, a novel concept, namely the POD (proper orthogonal decomposition) angle is proposed to form such a criterion, which is developed from the POD technique. Based on this new concept, some of its theoretical properties are also described and proven along with the introduction of POD angle. As an illustrative example for the usage of POD angle, a cyclohexane process is studied where the POD angle is used to analyze the influence of feed temperature on the temperature distribution of whole system. It is demonstrated that when feed temperature is operated in the range of 100 to 120 °С, the POD angle will experience a change of 17.8022°, corresponding to fluctuant amplitude of 82.0309 °С for the system temperature. Therefore, temperature distribution of system is sensitive to feed temperature in this situation. On the other hand, when feed temperature is operated in the range of 120 to 200 °С, the POD angle changes only 1.1595° on average whilst the temperature distribution of whole system average varies only 5.0486 °С, hence we conclude that the feed temperature imposes a minor impact on the temperature of the system as compared with the former case. Copyright © 2014 IFSA Publishing, S. L.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

a Simplified Model of Distributed Parameter Systems

A generalized simplified model for describing the dynamic behavior of distributed parameter systems is proposed. The various specific characteristics of gain and phase angle of distributed parameter systems are investigated from frequency response formulation and complex plane representation of the proposed simplified model. The complex plane investigation renders some important inequality cons...

متن کامل

Active control vibration of circular and rectangular plate with Quantitative Feedback Theory (QFT) Method

Natural vibration analysis of plates represents an important issue in engineering applications. In this paper, a new and simplify method for vibration analysis of circular and rectangular plates is presented. The design of an effective robust controller, which consistently attenuates transverse vibration of the plate caused by an external disturbance force, is given. The dynamics of the plate i...

متن کامل

An experimental study on the determination of gantry angle and SSD dependencies of TLD and MOSFET dosimeter systems

Background: The purpose of this study was to investigate the various gantry angle and SSD dependencies of TLD and MOSFET dosimeters. Materials and Methods: LiF (Mg) TLD and MOSFET were used in this study. Dosimeter systems were calibrated and then irradiated at various gantry angle and SSD by applying 6 MV photon energy. Results: Based on the results, MOSFET changes were found to be in 2% range...

متن کامل

Studying Dynamic behavior of Distributed Parameter Processes Behavior Based on Dominant Gain Concept and it’s Use in Controlling these Processes

In this paper, distributed parameter process systems behavior is studied in frequency domain. Based on the dominant gain concept that is developed for such studies, a method is presented to control distributed parameter process systems. By using dominant gain concept, the location of open loop zeros, resulted from the time delay parameter in the process model, were changed from the right half p...

متن کامل

Maximum Power Point Tracker for Photovoltaic Systems Based on Moth-Flame Optimization Considering Partial Shading Conditions

The performance of photovoltaic (PV) systems is highly dependent on environmental conditions. Due to probable changes in environmental conditions, the real-time control of PV systems is essential for exploiting their maximum possible power. This paper proposes a new method to track the maximum power point of PV systems using the moth-flame optimization algorithm. In this method, the PV DC-DC co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014